

# Edexcel (B) Biology A-level 5.7 - Photosynthesis

**Flashcards** 

This work by PMT Education is licensed under CC BY-NC-ND 4.0











Describe the structure of a chloroplast.











#### Describe the structure of a chloroplast.

- Usually disc-shaped.
- Double membrane (envelope).
- Thylakoids: flattened discs stack to form grana.
- Intergranal lamellae: tubular extensions attach thylakoids in adjacent grana.
- Stroma: fluid-filled matrix with high enzyme and substrate concentration.









Where do the light-dependent & light-independent reactions occur in plants?











Where do the light-dependent & light-independent reactions occur in plants?

**Light-dependent**: in the thylakoids of chloroplasts.

**Light-independent**: stroma of chloroplasts.









# Name the processes in the light-dependent reaction.











#### Name the processes in the light-dependent reaction.

- photoionisation
- electron transfer chain
- chemiosmosis

#### non-cyclic only:

- reduction of NADP
- photolysis of water









# Explain the role of light in photoionisation.











Explain the role of light in photoionisation.

Chlorophyll molecules absorb energy from photons of light.

This 'excites' 2 electrons (raises them to a higher energy level), causing them to be released from the chlorophyll.









## What happens in the electron transfer chain (ETC)?









What happens in the electron transfer chain (ETC)? Electrons released from chlorophyll move down a series of carrier proteins embedded in the thylakoid membrane & undergo a series of redox reactions, which releases energy.









How is a proton concentration gradient established during chemiosmosis?











How is a proton concentration gradient established during chemiosmosis?

Some energy released from the ETC is coupled to the active transport of H<sup>+</sup> ions (protons) from the stroma into the thylakoid space.









### How does chemiosmosis produce ATP in the light-dependent stage?











How does chemiosmosis produce ATP in the light-dependent stage?

H<sup>+</sup> ions (protons) move down their concentration gradient from the thylakoid space into the stroma via the transmembrane channel protein ATP synthase

ATP synthase catalyses ADP + Pi → ATP









#### Describe non-cyclic photophosphorylation.











Describe non-cyclic photophosphorylation.

Uses Photosystems I & II. Excited electrons enter ETC to produce ATP. NADP acts as final electron acceptor & is reduced. Water is photolysed to release electrons to replace those lost from PS II.









#### Describe cyclic photophosphorylation.











Describe cyclic photophosphorylation.

Uses only Photosystem I. Excited electrons enter ETC to produce ATP then return directly to photosystem (so no reduction of NADP & no water needed to replace lost electrons).









#### State the purpose of cyclic and non-cyclic photophosphorylation.











State the purpose of cyclic and non-cyclic photophosphorylation.

**cyclic**: produces additional ATP to meet surplus energy demands of cell.

**non-cyclic**: produces ATP and reduced NADP for Calvin cycle to produce biological compounds.









What happens in photolysis of water?







What happens in photolysis of water?

Light energy splits molecules of water

$$2H_2O \rightarrow 4H^+ + 4e^- + O_2$$







## What happens to the products of the photolysis of water?









What happens to the products of the photolysis of water?

H<sup>+</sup> ions: move out of thylakoid space via ATP synthase & are used to reduce the coenzyme NADP.

e: replace electrons lost from chlorophyll.

O<sub>2</sub>: used for respiration or diffuses out of leaf as waste gas.









How and where is reduced NADP produced in the light-dependent reaction?









How and where is reduced NADP produced in the light-dependent reaction?

NADP +  $2H^+$  +  $2e^- \rightarrow reduced NADP$ .

Catalysed by dehydrogenase enzymes.

Stroma of chloroplasts.









Where do the H<sup>+</sup> ions and electrons used to reduce NADP come from?











Where do the H<sup>+</sup> ions and electrons used to reduce NADP come from?

H<sup>+</sup> ions: photolysis of water.

**Electrons:** NADP acts as the final electron acceptor of the electron transfer chain.










### Name the 3 main stages in the Calvin cycle.











Name the 3 main stages in the Calvin cycle.

- 1. Carbon fixation
- 2. Reduction
- 3. Regeneration











What happens during carbon fixation?











What happens during carbon fixation?

Reaction between CO<sub>2</sub> & ribulose bisphosphate (RuBP) catalysed by ribulose bisphosphate carboxylase (RUBISCO).

Forms unstable 6C intermediate that breaks down into 2 x glycerate 3-phosphate (GP).









#### What happens during reduction (in the Calvin cycle)?









What happens during reduction (in the Calvin cycle)?

2 x GP are reduced to 2 x glyceraldehyde phosphate (GALP).

Requires 2 x reduced NADP & 2 x ATP.

Forms 2 x NADP & 2 x ADP.









How does the light-independent reaction result in the production of useful organic substances?











How does the light-independent reaction result in the production of useful organic substances?

GALP acts as raw material when 1C leaves the cycle to produce monosaccharides, amino acids & other biological molecules.









## What happens during regeneration (in the Calvin cycle)?











What happens during regeneration (in the Calvin cycle)?

- After 1C leaves the cycle, the 5C compound RuP forms.
- RuBP is regenerated from RuP using 1x ATP
- Forms 1x ADP.



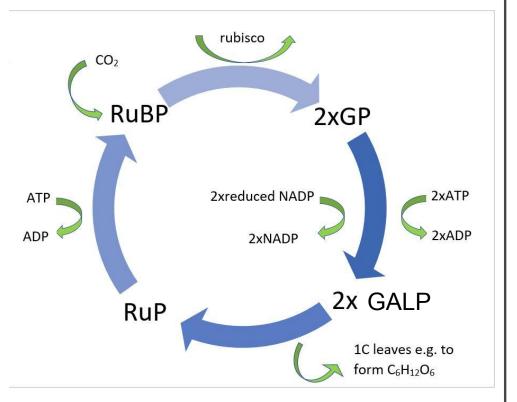






Outline the sequence of events in the light-independent reaction (Calvin cycle).












Outline the sequence of events in the light-independent reaction (Calvin cycle).











State the roles of ATP & (reduced) NADP in the light-independent reaction.











State the roles of ATP & (reduced) NADP in the light-independent reaction.

**ATP**: reduction of GP to TP & provides phosphate group to convert RuP into RuBP.

(reduced) **NADP**: coenzyme transports electrons needed for reduction of GP to TP.









## State the number of carbon atoms in RuBP, GP & GALP.









State the number of carbon atoms in RuBP, GP & GALP.

RuBP: 5

GP: 3

GALP: 3









## Define 'limiting factor'.









Define 'limiting factor'.

Factor that determines maximum rate of a reaction, even if other factors change to become more favourable.











## Name 4 environmental factors that can limit the rate of photosynthesis.











Name 4 environmental factors that can limit the rate of photosynthesis.

- Light intensity (light-dependent stage).
- CO<sub>2</sub> levels (light-independent stage).
- Temperature (enzyme-controlled steps).
- Mineral / magnesium levels (maintain normal functioning of chlorophyll).





